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The theoretical results presented in this work point out that quantitative struc-
ture–properties relationslips (QSPR) can be appropriately founded within the theoret-
ical background of quantum mechanics. In this way, the deducible quantum QSPR
(QQSPR) framework and the associated fundamental equation, furnish with a causal
backup the structure–properties relationships old problem. Moreover, they also provide
algorithms to obtain in a general manner, up to any approximation level and even from
a variational point of view, unbiased and universal causal QSPR models for any chosen
quantum object set.
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1. Introduction

Until now, a good deal of theoretical statements have been set about
the foundations of Quantum Quantitative Structure–Properties Relationships
(QQSPR) [1], namely the construction of the fundamental QQSPR equation [2]
and the generalization of the basic linear formalism based on extended wave
functions [3].

Among other advances from the original idea, which essentially was
intended to show the origin of empirical QSPR [4] and the setting of a funda-
mental QQSPR equation [2], there was developed a line of research, based on
the stochastic transformation [5] of the similarity matrix [6,7] and, thus, a new
fundamental QQSPR equation form was set up. Stochastic based fundamental
QQSPR equation [5] among other characteristics has the main structure pre-
pared to hold solutions, supposedly approximate, which as well as the appropri-
ately constructed column or row submatrices of the stochastic similarity matrix
can be contained into a vector semispace [8]. The in deep exploration of sto-
chastic fundamental QQSPR equations structure and properties is still to be fully
developed.
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242 R. Carbó-Dorca / Non-linear & variational QQSPR

In fact, up-to-date, the fundamental QQSPR equations have been mainly
treated from the practical point of view as sources of classical QSPR informa-
tion [9]. Thus, the usual published work on QQSPR has been intended to show
that quantum similarity matrices can be used as a sound source of molecular
descriptors [10]. Such quantum similarity uses were developed to be employed
within the usual classical mathematical treatment, using appropriate statistical
procedures for obtaining QSPR linear models [11]. The results of this action so
far have provided linear functionals, which are comparable to the usual QSPR
ones as obtained from classical statistical manipulation of arbitrary descriptors
[9]. QQSPR has thus proved that unbiased and universal quantum similarity de-
scriptors can be safely employed as a source of classical QSPR models. More-
over, besides the quantum origins of the descriptors, the differences between
QQSPR and classical QSPR, can be easily found in the fact that, being the
QQSPR models based on the fundamental QQSPR equation, then they can be
attached to some causal relationship between molecular structure and properties,
which within QQSPR theory are theoretically related by means of the quantum
mechanical expectation value concept [12].

Then, it appears that the moment has arrived to find out the path, when-
ever it exists, to build up a general QQSPR modelling system as independent as
possible of classical QSPR procedures.

Among several alternative possibilities for continued research in QQSPR,
two of them appear more relevant to the immediate testing grounds and a third
one will be left to be discussed after them. Finally, a theoretical setup, based
on the variational method, will be presented as a possible structure over which
QQSPR can be founded.

The first subject to be analysed of the initial set of two, consists in
testing fundamental QQSPR equations based into non-symmetric, rectangular
similarity matrices. This matrix structure appears from the study of a molecular
quantum object set of M elements, whose density functions are taken as a basis
set. Known this M-dimensional basis set, then the quantum similarity measures
can be easily computed from it and a probe discrete quantum object set [8] can
be constructed by using N known molecular structures as objects. As a result,
this procedure provides a (M × N ) similarity matrix, which can subsequently be
employed in the setting of QQSPR fundamental equation.

The second research option will consist into the use of higher order terms
to construct the operator entering the fundamental QQSPR equation. This
choice provides, as a consequence, triple or multiple density quantum similarity
measure [13,14] representations which can be used to build up the molecular
similarity matrices. Once the similarity matrices known, one can try to construct
and solve an attached fundamental QQSPR equation.

A third natural research option can be associated to the study of the
stochastic fundamental QQSPR equation and the vector semispace [8] restricted
solutions, which can apparently lay within the QQSPR formalism by construction.
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After finishing these three preliminary options, taken as a basic discus-
sion, then the framework will be set to seek for a QQSPR method not so con-
nected with the usual classical QSPR procedures. This possibility is left to the
end of the present work as encompasses every previous step, while providing a
completely different way to obtain structure–properties relationships with fund-
aments lying exclusively over the quantum mechanical theoretical ground.

2. Fundamental QQSPR equation in (N × M) similarity matrix spaces

Suppose a quantum object [8] basis set B composed by M quantum sys-
tems, whose homogeneous density functions, acting as quantum object tags, are
known: B = {ρB

I |I = 1, M
}
. Suppose also that a probe quantum object set P is

well defined and composed by N quantum systems, which have also known den-
sity tags:

{
ρP

J

}
, and at least is also known a set of property values: {pJ } attached

to every quantum object of the set; in this manner: P = {ρP
J ∧ pJ |J = 1, N

}
.

A general operator � can be associated to the expectation value computa-
tion of the observable property π , in such a way that, knowing the appropriate
quantum state density function tag ρ for a given quantum system, such quan-
tum object observable property can be evaluated in general by using the integral
form [4,15]:

〈π〉 = 〈�|ρ〉 =
∫

D

� (r) ρ (r)dr, (1)

where D is an appropriate integration domain, where the density and operator
variables are defined.

Being the operator �, in principle, after the adoption of quantum mechan-
ical rules, a Hermitian operator, without loss of generality it can be supposedly
decomposed into a product of two commutative operators

� (r) = W (r) � (r) ∧ [W (r) ; � (r)] = 0, (2)

the operator � being a known chosen positive definite one, the remnant Hermi-
tian operator is thus defined as

W (r) = � (r) �−1 (r) . (3)

Using equation (1) and the operator composition shown in equation (2),
then it can be formally written

〈π〉 = 〈W�|ρ〉 ≡ 〈W |�ρ〉 = 〈W |�|ρ〉 , (4)

suggesting that the operator W could be approximately obtained, even in the
case that it is unknown, due to the nature of the observable attached to the
property π .
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In the case, most usual in QQSPR framework, that an approximate
construction of the operator W is needed, if an appropriate quantum object set
density function tag set, acting as a basis set, B say, is known, as stated at the
beginning, that is, B = {

ρB
I |I = 1, M

}
, then the operator W can be written

within a first-order linear approach as

W≈
M∑

I=1

ωIρ
B
I (5)

so upon substituting this approximate first-order linear expression into the expec-
tation value in equation (4), it is obtained as

〈π〉 ≈
M∑

I=1

ωI

〈
ρB

I

∣∣� |ρ〉 , (6)

where the integral in equation (6) can be interpreted as a quantum similarity
measure [6], that is,

〈
ρB

I

∣∣� |ρ〉 ≡
∫∫

D

ρB
I (r1)� (r1; r2) ρ (r2) dr1 dr2. (7)

The unknown coefficient set in equation (6): |ω〉 = {ωI |I = 1, M }, which
can be collected into an M-dimensional column (or row) vector, will represent
the operator W in terms of the known density function basis set B. This situa-
tion, clearly represented by equation (6), still has a set of undetermined param-
eters, associated now to the vector |ω〉 components, instead of the operator W.

Equation (6) can be used to obtain the vector |ω〉. As it is usually the case
in classical QSPR, it is only necessary to know, a quantum object tag set, associ-
ated to some molecular probe set P of cardinality N, P = {ρP

J ∧ pJ |J = 1, N
}
,

where, as previously commented, every quantum object structure in P has also
necessarily to be attached to a known value of the involved observable: |p〉 =
{pJ |J = 1, N }, which can be also collected in form of a N-dimensional col-
umn (or row) vector. Then, equation (6) can be rewritten for every element in
P, employing the known property values instead of the expectation observable
values, that is,

∀J = 1, N : pJ ≈
M∑

I=1

ωI

〈
ρB

I

∣∣� ∣∣ρP
J

〉
(8)

in this way, the following set of quantum similarity measures is generated:

aBP
IJ (�) ≡ aBP

IJ = 〈ρB
I

∣∣� ∣∣ρP
J

〉
, (9)
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which in turn can be considered, after an appropriate rearrangement, as elements
of a (M × N ) similarity matrix, involving the basis and probe quantum object
molecular sets, respectively: A = {aBP

IJ

}
.

With this matrix definition in mind, then equation (8) can be rewritten as a
linear system in matrix form, connecting the already defined vectors in row space
form:

〈p| = 〈ω| A. (10)

Such a linear system can be associated to the most common dual problem in col-
umn vector space, just defining the transpose of the similarity matrix, using the
usual definition

Z = AT → ∀I = 1, N ∧ J = 1, M : zPB
JI = aBP

IJ , (11)

and in this manner, the fundamental QQSPR equation is set up, writing a col-
umn equivalent dual expression of the former row equation (10)

Z |ω〉 = |p〉 . (12)

As in classical QSPR, the solutions of equation (12) may provide the
knowledge of the coefficient vector |ω〉. However, it must be again stressed the
fact that equation (12) differs from the classical QSPR setup in the sense that
such an equation can be deduced from the quantum mechanical statistical struc-
ture, associated to expectation value calculations. In this way, the causal connec-
tion between molecular structure and molecular properties can be deduced from
employing quantum mechanical theoretical fundaments, via the ideas of quan-
tum similarity. The interest of such relationship lies in the fact that fundamental
QQSPR equations can be extended to any quantum object structure and prop-
erties. So, obviously, these relationships can be applied to molecular systems as
well, provided they can be described as quantum objects, making QQSPR uni-
versal in the sense that it can be applied, under the same conditions, to any sub-
microscopic quantum object set.

3. Remarks on the structure of the fundamental QQSPR equation

Some remarks may be stated in front of the result given by equation (12)
and discussed into the section above. Each of these remarks poses new problems
ahead, which will be studied separately in subsequent sections.

3.1. Symmetrical similarity matrices

In the first place, it must be said that the fundamental QQSAR equation
has been usually presented in previous literature within the particular case where
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the basis and probe molecular quantum object tagged sets coincide, providing a
square symmetric similarity matrix, and thus the equality: A = Z, between the
involved similarity matrices holds [6]. This choice has the drawback consisting in
that the linear system (12) becomes well defined, with a unique solution, when-
ever the similarity matrix is non-singular, which shall be the usual case, as far as
no quantum object coincides with another within the quantum object set.

But even then, there is quite a wide range of solutions to overcome this
apparent limitation. Among other procedures, one can use the symmetric simi-
larity matrix as a source of molecular descriptors and afterwards employ them in
classical statistical treatments. This choice, as was already commented, has been
studied in many publications of our laboratory with success. In the same way,
the similarity matrix can be transformed into a column or row stochastic matrix
and, as a consequence, this form suggests several possibilities, which still are far
from being exploited. Some analysis of the stochastic issue will be developed in
a forthcoming section of the present paper.

3.2. Origin of Hansch [16] QSAR models

An interesting possibility of the symmetric square representation of the
quantum similarity matrices corresponds to its potential to unveil the origin of
one parameter classical QSAR models, such as those Hansch has described some
years ago. Indeed, under the equivalence of both the basis B and probe P quan-
tum object sets, equation (12) corresponds to a set of N equations with the same
number of unknowns, and can be rewritten as

∀J = 1, N : pJ ≈
N∑

I=1

ωIzIJ = ωJ zJJ +
N∑

I �=J

ωI zIJ , (13)

where there is no need to attach the similarity matrix elements to any specific
quantum object set, as all of them are computed over a unique basis of den-
sity function tags. Considering the two terms at the end of equation (13), it
can be seen that the first one, with a diagonal value of the similarity matrix, is
attached to a self-similarity measure zJJ , while the second term in cases of a not
so strongly varying family of quantum objects, can be considered almost a con-
stant, that is using

∀J : α = ωJ ∧ β≈
N∑

I �=J

ωI zIJ (14)

equation (13) takes the final form

∀J = 1, N : pJ ≈αzJJ + β (15)
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which has the required appearance to be considered as possessing a Hansch
structure.

Besides of this last deduction, it must be said that self-similarity measures
of different kinds have been used to test equation (15) with quite a large series
of quantum objects yielding usually good results. Self-similarities can be sound
substitutes of the classical Hansch analysis parameters [17]. They constitute for
co-generic molecular sets molecular descriptors with the property to be directly
attached to a tri-dimensional molecular structure. Self-similarity measures vary
slowly with conformational changes [18], so their values for the optimal geome-
try can be safely used, knowing that the magnitude of the descriptor will differ
not very much from the one which is attached to the active conformation asso-
ciated to the observable property.

4. Non-linear QQSPR equations

4.1. Introduction

In a second remark step, which appears to be sufficiently important as to
merit a separate section treatment, the approximate operator linear description
(5) may be extended with non-linear terms, which can be easily provided by
the nature of the involved quantum object density function tags, which can be
founded in turn on the theoretical development of extended wave functions [3,
15].

In this case, equation (5), can be written in a more structured manner as a
truncated Taylor series, where only the first two terms are kept for simplicity

W≈
M∑

I=1

ωIρ
B
I +

M∑
P=1

M∑
Q �P

ωPQρB
P ρB

Q + O (3) , (16)

however, with the potential prospect to add terms up to any order. Equation (16)
can be perhaps also considered a simplification of a series involving density func-
tions of growing orders, that is,

W≈
M∑

I=1

ω
(1)
I ρ

(1)B
I +

M∑
P=1

ω
(2)
P ρ

(2)B
P + O (3) . (17)

The second order coefficient set
{
ωPQ

}
in equation (16), can be also substi-

tuted as well, in order to retain a minimal number of unknowns, by products of
first-order coefficients, in the following way:

∀P, Q : ωPQ≈ωP ωQ. (18)
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Then, just if this is the case, equation (8), transforms into a more computation-
ally convenient form:

∀J = 1, N : pJ ≈
M∑

I=1

ωI

〈
ρB

I

∣∣� ∣∣ρP
J

〉+ M∑
P=1

M∑
Q �P

ωP ωQ

〈
ρB

P ρB
Q

∣∣� ∣∣ρP
J

〉+ O (3) ,

(19)

4.2. Triple density quantum similarity integrals

The integrals included into the second-order terms of equation (19) are tri-
ple density similarity measures [14], which can have the form chosen, among
many other possibilities, in the following way:

〈
ρB

P ρB
Q

∣∣� ∣∣ρP
J

〉 ≡ ∫∫∫
D

ρB
P (r1) ρB

Q (r2) � (r1; r2; r3) ρP
J (r3)dr1 dr2 dr3. (20)

Moreover, the usual computational form of the triple density measures can be
the one, where the operator becomes unit and all the integrand density functions
bear the same variable, so the integral in equation (20) acquires a simpler struc-
ture, like the triple density overlap integral form:

〈
ρB

P ρB
QρP

J

〉 ≡ ∫
D

ρB
P (r) ρB

Q (r) ρP
J (r) dr, (21)

while, first order similarity measures (7) become, under an equivalent simplifica-
tion, overlap-like integrals [6]

〈
ρB

I ρP
J

〉 ≡ ∫
D

ρB
I (r) ρP

J (r) dr. (22)

Equations (21) and (22), could be obtained defining the respective weighting
operators in terms of an integral operator, involving as many products of Dirac’s
delta functions as density functions appear into the integrand. For instance, in
equation (20), the operator � (r1; r2; r3) can be substituted inside the integral in
the following manner:

〈
ρB

P ρB
QρP

J

〉 ≡ ∫
D

[∫∫∫
D

ρB
P (r1) ρB

Q (r2) (δ (r1 − r) δ (r2 − r) δ (r3 − r)) ρP
J (r3)dr1 dr2 dr3

]
dr

=
∫

D

[∫
D

ρB
P (r1)δ (r1 − r) dr1

∫
D

ρB
Q (r2)δ (r2 − r) dr2

∫
D

ρP
J (r3) δ (r3 − r)dr3

]
dr

=
∫

D

ρB
P (r)ρB

Q (r) ρP
J (r) dr. (23)

It is, then, straightforward to use the same technique to obtain equations pos-
sessing a higher number of density function terms, and so it is easily seen how to
take into account and to handle them in the same manner, adding higher order
terms within non-linear fundamental QQSPR equations of type (19).
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4.3. Hansch type QQSPR quadratic models

In the same manner as done above in the linear case, the fundamental qua-
dratic QQSPR equation (19) can be simplified, so only the diagonal terms of the
initial equation remain. First using just a probe set, taking B = P and then sup-
posing that the remnant equation summation terms are constant under the study
of some quantum objects, possessing a great deal of homogeneity. In this case
one can write

∀J = 1, N : pJ ≈β + α
〈
ρP

J

∣∣� ∣∣ρP
J

〉+ α2 〈ρP
J ρP

J

∣∣� ∣∣ρP
J

〉+ O (3) , (24)

which constitutes a quadratic extension of the linear Hansch type relationships
(15).

4.4. Quadratic fundamental QQSPR equation in matrix form

Having set up in the way outlined above the formal structure of the funda-
mental QQSPR equations, there is the moment to discuss its matrix implemen-
tation, which constitutes the obliged step when seeking for computational algo-
rithms in practical cases. Two possible equivalent modes will be discussed in this
section: the first one corresponds to classical matrix product formalism, while a
second part will present an equivalent form just employing inward matrix prod-
ucts. The reason for this second formal presentation is the easiness of setting a
general framework up to any approximation order.

4.4.1. Classical form
Equation (19) can be easily written in matrix form. For this purpose it is

only necessary to define, besides the column vector of the first-order coefficients

|ω〉 = {ωI |I = 1, M } (25)

also, for every quantum object within the probe set, the first order M-dimensional
similarity matrix columns

J = 1, N :
∣∣∣z(1)

J

〉
=
{
z
(1)
IJ = 〈ρB

I

∣∣� ∣∣ρP
J

〉 |I = 1, M
}

(26)

as well as the second order (M × M)-dimensional similarity matrices
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J = 1, N : Z(2)
J =

{
z
(2)

J ;PQ = 〈ρP
J

∣∣� ∣∣ρB
P ρB

Q

〉 |P, Q = 1, M
}

, (27)

shall be constructed.
Taking the above defined similarity matrices into account, equation (19) can

be written as

J = 1, N : pJ ≈
〈
z(1)
J

∣∣∣ω〉+ 〈ω ∣∣∣Z(2)
J

∣∣∣ω〉+ O (3) , (28)

so, collecting the property observable values into a column vector |p〉 =
{pJ |J = 1, N }, as already discussed and then, reordering first- and second-order
matrix components in the following way:

Z(1) =
{∣∣∣z(1)

J

〉
|J = 1, N

}
(29)

and

Z(2) =
{

Z(2)
J

∣∣J = 1, N
}

(30)

then the second order fundamental QQSPR equation becomes a quadratic sys-
tem of equations in matrix form:∣∣∣p〉≈(Z(1) +

[〈
ω

∣∣∣Z(2)
])∣∣∣ω〉+ O

(
3
)
. (31)

4.4.2. Inward matrix product form as a generalization device
Alternatively, there is the possibility to express the equations of the previ-

ous description by means of inward matrix products [2]. The first-order term in
equation (28) can be expressed within inward product formalism at once, as it is
a simple scalar product between the involved vectors, so:

J = 1, N :
〈
z(1)
J

∣∣∣ω〉 ≡
〈∣∣∣z(1)

J

〉
∗ |ω〉

〉
, (32)

while the second-order term may be expressed in inward product form with the
aid of the coefficient vector tensor product, forming a square (N × N ) matrix:

W = |ω〉 ⊗ |ω〉 ≡ {wIJ = ωIωJ |∀I, J = 1, N} . (33)

so, one can write then the quadratic term of equation (31) as an inward matrix
product too

J = 1, N :
〈
ω

∣∣∣Z(2)
J

∣∣∣ω〉 ≡
〈
Z(2)

J ∗ W
〉
=
〈
Z(2)

J ∗ (|ω〉 ⊗ |ω〉)
〉
, (34)

and consequently equation (28), can be rewritten as

J = 1, N : pJ ≈
〈∣∣∣z(1)

J

〉
∗ |ω〉

〉
+
〈
Z(2)

J ∗ (|ω〉 ⊗ |ω〉)
〉
+ O (3) . (35)
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4.5. Inward matrix product formalism of fundamental QQSPR equation nth
order terms

Both, classical and inward product, formalisms are equivalent; however, the
inward product equation (35), permits to easily imagine any sequence of correc-
tions into the fundamental QQSPR equation, up to any arbitrarily chosen nth
order term. just writing:

J = 1, N : pJ ≈
n∑

R=1

〈
Z(R)

J ∗
(

R⊗
S=1

|ω〉
)〉

+ O (n + 1) , (36)

where the leading equation terms are
{

Z(R)
J

∣∣∣J = 1, N
}

the Rth order similarity
matrices, which can be constructed as

J =1, N : Z(R)
J =

{
z
(R)

J ;S(i) =
〈
ρP

J

∣∣�∣∣ρB
S1

ρB
S2

· · · ρB
SR

〉∣∣∣ ∀α=1, R : Lα ∈ {1, 2, . . . , M}
}

(37)

with the index set: S (i) = {S1, S2, . . . , SR} formed by any of the MR combina-
tions with repetition of R elements chosen within the M integers and, finally, the

Rth order tensor products of the coefficient vector are noted as:
R⊗

S=1

∣∣ω〉.
5. Stochastic Transformations

It is now the moment to discuss a third remark step, dealing about the sto-
chastic transformation of similarity matrices, because it also merits a separate
section. Nowadays, several studies have dealt with stochastic transformations
of the fundamental QQSPR equation in linear symmetric form, that is, using
B = P .

At the light of the previous manipulation presented in this study, the sto-
chastic structure transformation [5] of the fundamental QQSPR equation has to
be performed, at any operator-equation approximation level, using the possibil-
ity to compute the sum of the elements of the Rth order similarity matrices as
have been previously defined in equation (37), that is,

σ
(R)
J =

〈
Z(R)

J

〉
=
∑

(i)z(R)

J ;S(i), (38)

where a nested summation symbol
∑

(i) [19] has been employed in order to indi-
cate the nested sums over the R indices, represented by the index sets: S (i) =
{S1, S2, . . . , SR}. Using the sum of the similarity matrix elements (38), then the
elements of the new matrices scaled by this sum become scaled in turn as
follows:

S(R)
J =

(
σ

(R)
J

)−1
Z(R)

J (39)
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and the new Rth order stochastic similarity matrices [20] behave as a discrete
probability distribution, as: ∀S (i) : z

(R)

J ;S(i) ∈ R+ → s
(R)

J ;S(i) ∈ R+ and besides〈
S(R)

J

〉
= 1. (40)

Both properties can be cast into a unique convex condition symbol [8]:

K
(

S(R)
J

)
=
{
∀S (i) : s

(R)

J ;S(i) ∈ R+ ∧
〈
S(R)

J

〉
= 1
}

. (41)

So, in this way, the stochastic matrix set: S =
{

S(R)
J |R = 1, n

}
can be

considered, up to nth order, as a set of MR-dimensional unit shell elements
[21], belonging to some vector semispace with the same dimensions. In these cir-
cumstances one can consider the fundamental QQSPR equation (36) as to be
written:

J = 1, N : pJ =
n∑

R=1

〈
S(R)

J ∗
(

R⊗
S=1

|ω〉
)〉

+ O (n + 1) , (42)

where everything is the same as in the former equation (36), but the similarity
matrix set, which has been substituted by the stochastic matrices (39).

The coefficient vector has been left unchanged, but evidently his character
could be no longer the same as in equation (36). However, the nature of the
coefficient vector can be more precise in this case of the fundamental QQSPR
stochastic equations (42). This is due to the characteristic convex conditions
properties, which possess the semispace unit shell elements obtained transform-
ing the similarity matrices.

In fact, the stochastic similarity matrix set:
{

S(R)
J |R = 1, n

}
, so natu-

rally obtained from the original similarity matrix set, can be interpreted as a
sequential discrete representation of the continuous normalized density function
ρJ , associated to the involved Jth quantum object. Then, from the quantum
mechanical point of view, the whole stochastic matrix set can be viewed as a dis-
crete quantum object tag collection. Thus, in this case, the tensor products of the
coefficient vector can be easily considered arrays of convex sets, that is,

W(R) = R⊗
S=1

|ω〉 =
{
w

(R)

S(i)

}
→ 〈

W(R)
〉 =∑ (i)w(R)

S(i) = 1 ∧ ∀S (i) : w
(R)

S(i) ∈ R+ (43)

because, whenever the generating coefficient vector is a convex vector, that is, ful-
filling the convex conditions

K
(
|ω〉
)

=
{

I : ωI ∈ R+ ∧ 〈|ω〉〉 =
∑

I

ωI = 1

}
, (44)

then, any tensor product of the convex vector |ω〉 fulfils: K

(
R⊗

S=1
|ω〉
)

.
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Indeed, if convex conditions (44) hold, then it is easy to see that convex
conditions are present within any arbitrary order tensor product of the coeffi-
cient vector, as shown in the following deduction:

W(R) = R⊗
S=1

|ω〉 =
{
w

(R)

S(i) = ωS1ωS2 . . . ωSR
∈ R+

}
∧ 〈W(R)

〉 =∑ (i) w
(R)

S(i)

=
(∑

I

ωI

)R

=
(〈

|ω〉
〉)R

= (1)R = 1 → K

(
R⊗

S=1
|ω〉
)

≡ K
(
W(R)

)
. (45)

6. Variational QQSPR

So far the fundamental QQSPR equation has been solved by means of the
usual strategy associated to classical QSPR. Equations (12) and (31) or (42) as
in classical terms, can be solved for the coefficient vector |ω〉. As has been pre-
viously commented this is done, by substituting in the expectation value expres-
sion (19) the vector |π〉 by an experimental property vector |p〉, associated to
the probe quantum object set P. The result will be obtained in the same way
as in classical QSPR, but using the quantum similarity matrices as molecular
descriptors. However, fundamental QQSPR equation may be proven that it can
be solved within the usual quantum variational procedures.

6.1. Similarity matrix unrestricted variational treatment

For such a purpose it is sufficient to rewrite the second order expectation
value equation (19) as

∀J = 1, N : 〈πJ 〉 ≈
M∑

P=1

ωP z
(1)

J ;P +
M∑

P=1

M∑
Q�P

ωP ωQz
(2)

J ;PQ + O (3) (46)

then, considering every quantum object expectation value as a variational func-
tion of the parameters within the coefficient vector |ω〉, the resulting expres-
sion can be varied, taking into account that the density functions, supposedly
obtained by quantum mechanical procedures, no longer need variation. In this
way, every Jth quantum object will have to possess a specific coefficient vector
|ω〉, which can be thus named as |ωJ 〉. That is,

∀J = 1, N : δ 〈πJ 〉 ≈
M∑

P=1

δωP z
(1)

J ;P + 2
M∑

P=1

M∑
Q�P

δωP ωQz
(2)

J ;PQ + O (3) , (47)

then, using the variation condition for the Jth quantum object

δ 〈πJ 〉 = 0 (48)
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it is obtained

∀J = 1, N : 0≈
M∑

P=1

δωP z
(1)

J ;P + 2
M∑

P=1

M∑
Q �P

δωP ωQz
(2)

J ;PQ + O (3) , (49)

which can be rewritten as

∀J = 1, N ∧ P = 1, M : 0≈z
(1)

J ;P + 2
M∑

Q=1

ωQz
(2)

J ;PQ + O (3) . (50)

This last equation can be expressed in matrix form, using the appropriate simi-
larity matrices as previously defined in equations (26) and (27)

∀J = 1, N : z(1)
J + 2Z(2)

J |ωJ 〉 = 0, (51)

thus, the specific coefficients for each quantum object may be computed as

∀J = 1, N : |ωJ 〉 = −1
2

[
Z(2)

J

]−1
z(1)
J . (52)

This is the same as to associate a particular operator W to each quantum object,
constituting such a result not a too surprising feature, as the operator W can be
easily supposed to vary from one quantum object to another, in the same way
as Hamilton operators do. The variational expectation value for the Jth object
could be obtained in this case as

〈πJ 〉 ≈
〈
ωJ

∣∣z(1)
J

〉
+
〈
ωJ

∣∣Z(2)
J

∣∣ωJ

〉
+ O (3) . (53)

Using equation (52) into equation (53), the following expectation value final
optimal form will result:

〈πJ 〉 ≈ − 1
4

〈
z(1)
J

∣∣∣ [Z(2)
J

]−1 ∣∣∣z(1)
J

〉
+ O(3). (54)

6.2. Expectation vs. experimental values

Then, the set of stationary expectation values |π〉 can be compared with the
experimental value vector |p〉, in such a way as to have

|p〉 = a + b |π〉 , (55)

being {a, b} some origin and scale parameters, respectively. They can be obtained
by the usual well known regression techniques [20].
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6.3. Algorithm for unrestricted variational QQSPR

Once the set of coefficients {a, b} is obtained by using equation (55) for a
given probe quantum object set, the property expectation value 〈πK〉 of any new
quantum object K, say, with known density function ρK , can be employed to
estimate the experimental value pK of the quantum object studied property, by
using the following steps:

(a) Compute:
{

z(1)
K ; Z(2)

K

}
using the basis set B.

(b) Evaluate: 〈πK〉 ≈ − 1
4

〈
z(1)
K

∣∣∣ [Z(2)
K

]−1 ∣∣∣z(1)
K

〉
+ O (3).

(c) Obtain the estimated property: pK = a + b 〈πK〉.

6.4. Stochastic similarity matrices restricted variational treatment

Of course, all of which has been said up to now in this section remain valid
for stochastic similarity matrices:

{
s(1)
K ; S(2)

K

}
, they just have to be used instead

of the similarity matrix pair:
{

z(1)
K ; Z(2)

K

}
in the above algorithm. However, in the

stochastic case may be interesting if the coefficient set |ω〉 can to be obtained
obeying convex conditions as a restriction, so the previous unrestricted variation
algorithm may be no longer applicable.

6.5. Expectation value Jacobi rotations variational form

To obtain the desired restricted variation over the coefficient vector involved
into expectation value expressions, a similar procedure as the one employed in
developing the ASA technique [22] could be easily set up to perform the vari-
ational computation over equation (46), but taking into account the additional
restriction of obtaining a convex vector, as a result of the optimization process.

6.5.1. Preliminary considerations
When this option as discussed above is chosen, it is only necessary to

express the operator W variational coefficients with the aid of a new free nor-
malized auxiliary vector; in order to ensure the convex conditions K

(|ω〉) hold
throughout the entire optimization process, that is,∣∣ω〉 = ∣∣x〉 ∗ ∣∣x〉 ∧ 〈x|x〉 = 1 → 〈∣∣ω〉〉 =∑

I

ωI =
∑

I

x2
I = 1 ∧ ∀I : ωI = x2

I ∈ R+.

(56)

After this consideration, it is only necessary to obtain the variation of equa-
tion (46), by applying norm conserving, orthogonal elementary Jacobi rotations
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[23] into the auxiliary vector |x〉 element pairs, in order to arrive to an expres-
sion, depending of the elementary Jacobi rotation angle, which could be easily
optimized later on.

The interesting point to remark at this stage is to realize that such a
restricted variational procedure can be applied to higher order equations, with
orders larger than the ones studied up to now. This is due to the fact that Jacobi
rotations over the auxiliary vector just change a couple of the coefficient auxil-
iary vector elements each time an elementary Jacobi rotation is performed, and
the same occurs with the coefficient vector. This knowledge of the coefficient vec-
tor variation can be easily brought into the tensor products and worked out up
to any tensor order.

The rest becomes a procedure with somehow a growing technical compu-
tational complexity, but defined within a well structured theoretical background
algorithm.

6.5.2. Elementary Jacobi rotations algorithm scheme
Elementary Jacobi rotations need the cosine c, and the sine s, of a rotation

angle. These involved trigonometric functions fulfil the usual convex relationship:
c2 + s2 = 1. When acting over a vector, the Jacobi rotations will change two vec-
tor components, the Kth and Lth, say, leaving the remaining components as they
are

|x〉 =




. . .

xK

. . .

xL

. . .


→




. . .

cxK − sxL

. . .

sxK + cxL

. . .


⇒ |w〉 =




. . .

x2
K

. . .

x2
L

. . .


→




. . .

(cxK − sxL)2

. . .

(sxK + cxL)2

. . .


 (57)

It is easy to obtain the variation in the coefficient vector due to an elemen-
tary Jacobi rotation as

|δω〉 = νKL




. . .

−1
. . .

+1
. . .


 = νKL

(
|eL〉 − |eK〉

)
, (58)

where {|eK〉 , |eL〉} are the corresponding canonical basis set vectors. The scalar
coefficient νKL possess the form:

νKL = s2 (x2
K − x2

L

)+ 2csxKxL. (59)

Then, employing this result into the equivalent expression of equation (28),
but written in expectation value matrix form, it can be deduced

〈δπ〉 = 〈δω|
( ∣∣z(1)

〉+ 2Z(2) |ω〉
)

+ 〈δω| Z(2) |δω〉 , (60)
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where the quantum object subindex has been taken out to simplify the notation.
Then, upon substituting the coefficient vector variation

〈δπ〉 = νKL

[(
z
(1)
L − z

(1)
K

)
+ 2

∑
I

ωI

(
Z

(2)
IL − Z

(2)
IK

)]
+ ν2

KL

(
Z

(2)
KK + Z

(2)
LL − 2Z

(2)
KL

)
(61)

which, upon equalization to zero and terms rearrangement, can be expressed as
a second-order equation on the elementary Jacobi rotation sine and cosine

As2 + Bsc + β = 0, (62)

with the coefficients A and B defined as

A = α (ωK − ωL) ,

B = 2αxKxL,
(63)

and, besides, the parameters α and β are constructed by the elements of the sim-
ilarity matrices in the following way:

α = Z
(2)
KK + Z

(2)
LL − 2Z

(2)
KL,

β =
(
z
(1)
L − z

(1)
K

)
+ 2

∑
I

ωI

(
Z

(2)
IL − Z

(2)
IK

)
.

(64)

6.6. Higher order stochastic expectation value variational treatment

6.6.1. General comments
Whenever equation (42) is studied, after being conveniently modified for the

expectation values form,

∀J = 1, N : 〈πJ 〉 =
n∑

R=1

〈
S(R)

J ∗ W(R)
〉
+ O (n + 1) (65)

it appears the obvious fact consisting into that the variation will affect just the
Rth order tensor products W(R) of the coefficient vector. So it can be written,
dropping the quantum object subindex J just for convenience, as done before:

〈δπ〉 =
n∑

R=1

〈
S(R) ∗ δW(R)

〉+ O (n + 1) (66)

so the relevant variation will be associated to the terms δW(R), which can be eas-
ily written, using a tensor notation as

δW(R) = δ

(
R⊗

S=1
|ω〉
)

=
R∑

S=1

(
R

S

)[(
R−S⊗
P=1

|ω〉
)

⊗
(

S⊗
Q=1

|δω〉
)]

(67)



258 R. Carbó-Dorca / Non-linear & variational QQSPR

but being the definition of the coefficient vector variation, upon Jacobi rotations,
well known from equation (58), it can be written:

δW(R) =
R∑

S=1

(
R

S

)
(νKL)S

[(
R−S⊗
P=1

|ω〉
)

⊗
(

S⊗
Q=1

[(|eL〉 − |eK〉)])]. (68)

So in this way, the restricted variation of the expectation value QQSPR
equations, using elementary Jacobi rotations, is clearly defined up to any order.

6.6.2. A computational detail concerning tensor products of the difference of two
canonical vectors

The tensor product of the difference between the pair of canonical basis set
vectors:

|eL〉 − |eK〉 =




. . .

−1
. . .

+1
. . .


 ≡ |L〉 − |K〉 ≡ |L − K〉 , (69)

which appears in equation (68), may be expressed in terms of a nested summa-
tion symbol. For example, up to second order the sum of the four tensor terms
is readily written as

|L − K〉 ⊗ |L − K〉 = |L ⊗ L〉 − |L ⊗ K〉 − |K ⊗ L〉 + |K ⊗ K〉 (70)

with the obvious meaning for the involved tensors

|L ⊗ L〉 ≡ |eL〉 ⊗ |eL〉 = ELL = {eLL;PQ = δLP δLQ

}
(71)

and so on.
In general, up to Sth order

S⊗
Q=1

∣∣∣L − K
〉
=
∑

(i) σ
(
Q (i)

)∣∣Q (i)
〉
, (72)

where Q (i) = {Q1 ⊗ Q2 ⊗ · · · ⊗ QS} is any of the possible 2n combinations with
repetition of the indices K and L, the symbol |Q (i)〉 meaning a tensor product
of the initial canonical basis set vectors with such an index repetition. That is, an
object equivalent to a canonical hypermatrix, whose elements are all zero, except
the one with indices associated to those entering the set Q (i). Also σ (Q (i)) cor-
responds to the sign, associated to the fact that the index K appears in Q (i) an
even, σ (Q (i)) = +1, or odd, σ (Q (i)) = −1, number of times.
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7. Conclusions

Quantum similarity provides QSPR theory with a general framework,
where a set of computational procedures can be well described from the mathe-
matical point of view leading to the possibility to set up well defined algorithms.
Such algorithms lead in turn to models very similar to the classical QSPR linear
functional forms. Moreover, in the QQSPR case, the models possess the power of
creating universal and unbiased quantum object descriptors, which can be used
to construct causal relationships between quantum object structure and proper-
ties.

In order to obtain the desired theoretical QQSPR construction, a basis and
a probe quantum object sets are needed. Both quantum object sets shall have
known density function tags and, in addition, the probe set has to contain a
known set of property tags. Moreover, non-linear terms are easily introduced
into the theoretical models, just at the expense of needing more quantum simi-
larity measure integrals to be computed. From the background of the theoretical
QQSPR description, classical QSPR structures with multilinear models or even
simpler, like those proposed by Hansch, can be easily deduced.

The main difference between classical and quantum QSPR model construc-
tion consists into the fact the QQSPR equations could be considered causal,
even if the procedure needs statistical tools to obtain the desired relationship,
as QQSPR model functionals can always be considered originated from the fun-
damental QQSPR equation. Stochastic transformations of the initial QQSPR
framework can be easily imagined up to any order and provide quantum objects
of a discrete mathematical tag structure, resembling the density function behav-
iour.

The same fundamental QQSPR equation can be set up theoretically and
varied afterwards in order to obtain an optimal quantum mechanical description
of the QQSPR unknown operator representation. Then, every quantum object
expectation value can be optimally computed in terms of first and second order,
or up to higher orders, similarity measures, if necessary. These variational expec-
tation values can be related to known experimental values by finally setting an
appropriate origin and scaling factor. The complete QQSPR variational proce-
dure permits to easily obtain approximate experimental property values for new
quantum objects, not included into the initial probe quantum object set.

Resuming every theoretical aspect discussed here, one can state that the
present theoretical results point out that QSPR can be well founded within
the background of quantum mechanics. In this way, the deducible QQSPR
framework and the associated fundamental equation, not only provide with a
causal backup the structure–properties relationships old problem, but furnishes
a way to obtain in a general manner, up to any approximation level, unbiased
and universal causal models for any chosen quantum object set.
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[8] R. Carbó-Dorca, in: Advances in Molecular Similarity, Vol. 2, Chapter 2. eds. R. Carbó-Dorca,
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[17] L. Amat, R. Carbó-Dorca and R. Ponec, J. Comput. Chem. 14 (1998) 1575.
[18] P. Bultinck, X. Gironés and R. Carbó-Dorca, Revs. Comp. Chem. (in press)
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